jueves, 31 de octubre de 2013


RAM
Son las siglas de random access memory, un tipo de memoria de ordenador a la que se puede acceder aleatoriamente; es decir, se puede acceder a cualquier byte de memoria sin acceder a los bytes precedentes. La memoria RAM es el tipo de memoria más común en ordenadores y otros dispositivos como impresoras.
Hay dos tipos básicos de memoria RAM

RAM dinámica (DRAM)

RAM estática (SRAM)

Los dos tipos de memoria RAM se diferencian en la tecnología que utilizan para guardar los datos, la meoria RAM dinámica es la más común.
La meoria RAM dinámica necesita actualizarse miles de veces por segundo, mientras que la memoria RAM estática no necesita actualizarse, por lo que es más rápida, aunque también más cara. Ambos tipos de memoria RAM son volátiles, es decir, que pierden su contenido cuando se apaga el equipo.
Coloquialmente
Coloquialmente el término RAM se utiliza como sinónimo de memoria principal, la memoria que está disponible para los programas, por ejemplo, un ordenador con 8M de RAM tiene aproximadamente 8 millones de bytes de memoria que los programas puedan utilizar.

Memorias DDR, DDR2 y DDR3


De acuerdo al tipo de placa madre que utilicemos en nuestra PCésta estará provista de diferentes tipos de zócalos según su antigüedad, y puede que utilice memoria RAM DDR, DDR2 ó DDR3.
Las siglas DDR son utilizadas para abreviar el concepto "Double Data Rate", cuya definición es memoria de doble tasa de transferencia, y se trata de una serie de módulos que están compuestos por memorias síncronas, llamadas SDRAM, y si bien tienen el mismo tamaño de los DIMM de SDRAM, las DDR-SDRAM poseen mayor cantidad de conectores, ya que mientras la SDRAM normal tiene 168 pines, la DDR-SDRAM posee 184.
DDR trabajan transfiriendo datos a través de dos canales diferentes, de manera simultánea y en un mismo ciclo de reloj con una transferencia de un volumen de información de 8 bytes en cada ciclo de reloj. No obstante son compatibles con procesadores más potentes en cuanto a ciclos de reloj.

En lo que respecta a la memoria DDR2 se trata básicamente de la segunda generación de DDR SDRAM, que ha logrado mejorar ciertos aspectos brindando mayor rapidez en los procesos simultáneos.
Al ser una tecnología más moderna, las DDR2 poseen notables diferencias con sus antecesoras, entre las cuales la más significativa tiene que ver con el valor de transferencia mínima, ya que mientras que en las DDR tradicionales es de 1600Mbps, en las DDR2 se duplica a 3200Mbps.
Esto le permite un mayor ancho de banda en los procesos, ya que lasmemorias DDR2 tienen mayor latencia porque trabajan con 4 bits por ciclo (2 de ida y 2 de vuelta) dentro de un mismo ciclo y bajo la misma frecuencia de una DDR convencional.
Lamentablemente las DDR y las DDR2 no son compatibles, por lo que si tienes una PC cuya motherboard posee zócalos para DDR no podrás utilizar Memorias DDR2, ya que estás últimas tienen 240 pines, lo que permite reducir su voltaje a 1.8V, mientras que las DDR utilizan un voltaje de 2.5V.
La reducción del voltaje en la segunda generación de memorias DDR han incorporado una gran mejora, debido a que de esta manera se reduce considerablemente el consumo de energía y por ende la generación de calor.




El avance en el desarrollo de la tecnología de este tipo de memorias RAM produjo los nuevos módulos DDR3, cuyo fabricante más importante hasta el momento ha sido la empresa Samsung Electronics.
Debido a su nuevo diseño, la sucesora de la DDR2 incorpora importantes mejoras en el campo de las memorias DDR SDRAM, entre las que se destaca el hecho de que puede transferir datos a una tasa de reloj efectiva de 800-1600 Mhz, superando en gran medida a las DDR anteriores, ya que las DDR2 tienen una tasa de 533-800 MHz y las DDR de 200-400 MHz.
permite un mayor ancho de banda en los procesos, significativamente notable en el funcionamiento de la PC, además de haber duplicado su latencia a 8 bits, con el fin de aumentar su rendimiento, y duplicar su tasa de transferencia mínima a 6400Mbps, en comparación a las DDR2 que poseen una tasa de 3200Mbps.
Por otra parte, las DDR3 han reducido de manera notable el consumo a 1.5V, gracias a la implementación de la tecnología de fabricación de 80 nanómetros. Este cambio reduce el consumo de energía y la generación de calor, por lo que aumenta la velocidad en los procesos.
En cuanto al aspecto físico, si bien las DDR3 poseen 240 pines, es decir la misma cantidad que las DDR2, ambos tipos de memorias son incompatibles, ya que los pines han sido ubicados de manera diferente.
Con el avance en la tecnología relacionada a la informática, y los requerimientos de los usuarios que cada vez son más exigentes, ya existen empresas que se encuentran trabajando para dar el siguiente paso.



De acuerdo a recientes anuncios, la compañía Qimonda informó que se encuentra en pleno trabajo para desarrollar los nuevos módulos de Memoria DDR4, que incorporarán cambios notables en cuanto a velocidad y eficiencia.
según se anunció, en principio las DDR4 poseerán una velocidad de 2.133 y 2.667 Mhz, y posteriormente será lanzada una segunda línea que alcanzará velocidades de alrededor de 3.200 Mhz.
Esta aparición en el mercado de consumo masivo se espera para el 2012 y cuando finalmente las DDR4 sean lanzadas acapararán la atención de los usuarios más exigentes.

Memoria Caché: 
Es sinónimo de SRAM, ya que es el tipo de almacenamiento en que más se basa su uso, sin embargo también es posible crear segmentos de Caché en discos duros y unidades SSD, cumpliendo la función de almacenar datos e instrucciones utilizadas frecuentemente, pero sin punto de comparación con respecto a la velocidad que logra desarrollar la SRAM.

 

 

¿Qué es un Pen Drive?


Cada día son más los usuarios de PC que acceden a este tipo de tecnología. Un Pen Drive no es más que una unidad de almacenamiento de datos que se conecta a la PC con una tecnología maravillosa que lo comprime en un llavero de menos de 10 cm de largo.


Es muy cómodo pensar en llevar nuestra información en un medio que no falle, que sea seguro y que no ocupe espacio. Hasta el momento, estas prestaciones la brindaban los CDs, porque nuestros enemigos de los datos, llamados Discos de 3 ½, lejos estaban de darnos cualquier tipo de seguridad.

Dice Wikipedia:
 Un llavero USB (Universal Serial Bus)(en inglés USB flash drive) es un pequeño dispositivo de almacenamiento que utiliza la memoria flash para guardar la información sin necesidad de pilas. Los llaveros son resistentes a los rasguños y al polvo que han afectado a las formas previas de almacenamiento portable, como los CD y los disquetes.

Los sistemas operativos más modernos pueden leer y escribir en estos tipos de dispositivos sin necesidad de controladores especiales (Drivers, como comúnmente llamamos los informáticos).
 

Características

Los actuales memorias son USB 2.0, lo que les permite alcanzar velocidades de escritura/lectura de hasta 480 Mbit/s teóricos (aunque en la práctica, como mucho, alcanzan unos 20 Mbytes/s, es decir 160 Mbit/s). Tienen una capacidad de almacenamiento que va desde algunos megabytes hasta 8 gigabytes, aunque algunos llaveros que incorporan un minúsculo disco duro en vez de una memoria flash pudiendo almacenar incluso más de 20 GB. Sin embargo, algunos ordenadores pueden tener dificultades para leer la información contenida en dispositivos de más 2 GB de capacidad.

Algunos llaveros en vez de incluir la memoria flash integrada, incorporan un minilector de tarjeta de memoria. Esto permite reutilizar la memoria de, por ejemplo, una cámara digital.
De todos modos cualquier tarjeta de memoria es más cara que un llavero USB, por lo que la combinación de tarjeta y lector USB no es lo más barato.
Otro formato de memoria USB es un Reproductor MP3 con conexión USB y una memoria flash interna.

Utilidad
La mayoría de los llaveros USB son pequeños y ligeros. Son populares entre personas que necesitan transportar datos entre la casa, escuela o lugar de trabajo. Teóricamente, la memoria flash puede retener los datos durante unos 10 años y escribirse un millón de veces.

Otra utilidad de estos llaveros es que si la BIOS lo admite pueden arrancar un sistema operativo sin necesidad de otro disquete o CD. El arranque desde USB tiene la ventaja que esta muy extendido en ordenadores nuevos; un conector USB ocupa mucho menos que un lector de CD-ROM y una disquetera, y es mucho más barato; y se le puede conectar un disco duro "de verdad" si se necesita mas capacidad; para hacer una copia de seguridad, por ejemplo. Asimismo, algunas distribuciones de Linux están contenidas completamente en un llavero USB y pueden arrancar desde allí
 

Como medida de seguridad, algunos de estos llaveros tienen posibilidad de impedir la escritura mediante un interruptor, como la pestaña de los antiguos disquetes.
Otros permiten reservar una parte para ocultarla mediante una clave.

Los buses


  El "bus" es una palabra que traducida literalmente significa transporte. El bus es un conjunto de líneas eléctricas que el dispositivo integra para comunicarse con el resto de los componentes de la computadora. Hay varios tipos de bus, ya que cada dispositivo necesita enviar diferentes tipos de información, entre ellos están los siguientes:
     - Ejemplo: tenemos un dato que va a ser guardado en memoria RAM.
·         Bus de direcciones: se encarga de determinar en que lugar exacto de memoria se escribirá el dato.
·         Bus de control: maneja el momento y la forma de escribir el dato.
·         Bus de datos: se encarga de enviar el dato.
     El más utilizado para describir las características es el bus de datos, y el rendimiento del bus XT está en función de la velocidad del dispositivo y su capacidad de datos
EL BUS XT y EL BUS ISA (AT)
Cuando en 1980 IBM fabricó su primer PC, este contaba con un bus de expansión conocido como XT que funcionaba a la misma velocidad que los procesadores Intel 8086 y 8088 (4.77 Mhz). El ancho de banda de este bus (8 bits) con el procesador 8088 formaba un tandem perfecto, pero la ampliación del bus de datos en el 8086 a 16 bits dejo en entredicho este tipo de bus (aparecieron los famosos cuellos de botella).
Dada la evolución de los microprocesadores el bus del PC no era ni mucho menos la solución para una comunicación fluida con el exterior del micro. En definitiva no podía hablarse de una autopista de datos en un PC cuando esta sólo tenía un ancho de 8 bits. Por lo tanto con la introducción del AT apareció un nuevo bus en el mundo del PC, que en relación con el bus de datos tenía finalmente 16 bits (ISA), pero que era compatible con su antecesor. La única diferencia fue que el bus XT era síncrono y el nuevo AT era asíncrono. Las viejas tarjetas de 8 bits de la época del PC pueden por tanto manejarse con las nuevas tarjetas de 16 bits en un mismo dispositivo. De todas maneras las tarjetas de 16 bits son considerablemente más rápidas, ya que transfieren la misma cantidad de datos en comparación con las tarjetas de 8 bits en la mitad de tiempo (transferencia de 16 bits en lugar de transferencia de 8 bits).
No tan solo se amplió el bus de datos sino que también se amplió el bus de direcciones, concretamente hasta 24 bits, de manera que este se podía dirigir al AT con memoria de 16 MB. Además también se aumentó la velocidad de cada una de las señales de frecuencia, de manera que toda la circulación de bus se desarrollaba más rápidamente. De 4.77 Mhz en el XT se
pasó a 8.33 Mhz. Como consecuencia el bus forma un cuello de botella por el cual no pueden transferirse nunca los datos entre la memoria y la CPU lo suficientemente rápido. En los discos duros modernos por ejemplo, la relación (ratio) de transferencia de datos ya es superior al ratio del bus.
A las tarjetas de ampliación se les ha asignado incluso un freno de seguridad, concretamente en forma de una señal de estado de espera (wait state), que deja todavía mas tiempo a las tarjetas lentas para depositar los datos deseados en la CPU.
Especialmente por este motivo el bus AT encontró sucesores de más rendimiento en Micro Channel y en el Bus EISA, que sin embargo, debido a otros motivos, hasta ahora no se han podido introducir en el mercado.
La coexistencia hoy en día de tarjetas de ampliación de 8 bits y de tarjetas de ampliación de 16 bits es problemática mientras el campo de direcciones, del cual estas tarjetas son responsables, se encuentre en cualquier área de 128 KB. El dilema empieza cuando una tarjeta de 16 bits debe señalizar mediante una línea de control al principio de una transferencia de datos, que ella
puede recoger una palabra de 16 bits del bus y que al contrario de una tarjeta de 8 bits no tiene que desdoblar la transferencia en dos bytes.
Sin embargo esta señal la tiene que mandar en un momento en el que todavía no puede saber que la dirección del bus de datos se refiere verdaderamente a ella y que por tanto tiene la obligación de contestar. Ya que de las 24 líneas de dirección que contienen la dirección deseada, hasta este momento sólo están inicializadas correctamente las líneas A17 hasta A23, con lo cual
la tarjeta reconoce sólo los bits 17 hasta 23 de la dirección. Estos sin embargo cubren siempre un área completa de 128 KB, independientemente de lo que pueda haber en los bits de dirección 0 hasta 16. La tarjeta en este momento sólo sabe si la dirección de la memoria se encuentre en el área entre 0 y 127 KB, 128 y 255, etc.

Disco duro

Es un dispositivo electromecánico que se encarga de almacenar y leer grandes volúmenes de información a altas velocidades por medio de pequeños electroimanes  (también llamadas cabezas de lectura y escritura); sobre un disco cerámico recubierto de limadura magnética. Los discos cerámicos vienen montados sobre un eje que gira a altas velocidades. El interior del dispositivo esta totalmente libre de aire y  de polvo, para evitar choques entre partículas y por ende, pérdida de datos. Fue desarrollado y presentado por la empresa IBM® en el año de 1956
Si en este momento la tarjeta de 16 bits manda por tanto una señal para una transmisión de 16 bits, hablará de esta forma por el resto de las tarjetas que se encuentren dentro de este área. Esto podrá notarse acto seguido ya que una vez también hayan llegado al bus los bits de dirección 0 a 16, quedará claro cual es la tarjeta a la cual realmente se estaba dirigiendo. Si realmente se trata de una tarjeta de 16 bits todo irá bien. Pero si se estaba dirigiendo a una tarjeta de 8 bits, la tarjeta de 16 bits se despreocupa del resto de la transferencia y deja la tarjeta de 8 bits a su propia suerte. Ésta no podrá resolver la transferencia ya que está configurada sólo para transmisiones de 8 bits. En cualquier caso el resultado será una función de error de la tarjeta de ampliación.

tipos

  • SATA III / SATA 3 significa "Serial Advanced Technology Attachment 3" ó tecnología serial avanzada de contacto de tercera generación, con tecnología de transmisión de hasta 6 Gbps.
     Esta es la tercera generación de la familia de discos duros SATA. SATA III , tiene una mejor administración energética ya que la tendencia actual es la reducción del consumo. Es compatible con los estándares SATA y SATA 2 de 7 conectores, tiene la capacidad de genera una transferencia de datos (Rate) de hasta 600 MB/s. Permite la conexión de solo un dispositivo por conector. Este tipo de discos tienen una característica denominada "Hot swappable", lo que significa poder conectarlo y desconectarlo sin necesidad de apagar la computadora. Los discos duros SATA III están comenzando a reemplazar a los discos duros SATA II. El disco duro SATA III tiene la medida estándar de los discos duros para computadora de escritorio: 3.5 pulgadas (3.5").
Los discos duros SATA III compiten actualmente en el mercado contra los discos duros SCSI , discos duros SAS y los discos duros SATA 2.
Los discos duros SATA III se espera reemplazaran del mercado a los discos duros SATA II.
  • SAS proviene de las siglas de ("Serial Attached SCSI --Small Computer System Interface--"), SCSI adjunto serial. Es un estándar paradispositivos de alta velocidad que incluyen discos duros entre sus especificaciones, a diferencia del estándar SCSI que es paralelo.
     Estos discos duros no son muy populares a nivel doméstico como los discos duros IDE ó los discos duros SATA II; por lo que son utilizadosprincipalmente por grandes empresas en sus servidores y sus precios son muy altos en comparación con los anteriores mencionados.
     Puede depender de una tarjeta controladora SAS para trabajar y ser instalados, estas también soportan el uso de discos duros SATA; el cable es semejante al utilizado por la interfase SATA, con la diferencia de tolerar una longitud de hasta 6 metros, la capacidad de multiplexación, lo cuál permite la conexión de hasta 24 dispositivos. Importante, a pesar de utilizar la misma interfaz SAS y SATA, SAS es compatible con SATA pero SATA no es compatible con SAS.
     Hay dos características que cuenta denominadas "Hot Plug", lo que significa poder conectarlo y desconectarlo sin necesidad de apagar la computadora y "Non-Hot Plug", que indica que es necesario instalarlo con el equipo apagado.
     Las llamadas tarjetas controladoras SAS, de las cuáles depende algunas veces, no es más que una tarjeta de expansión tipo PCI-E, que permite interconectar el disco duro con la tarjeta principal ("Motherboard"), ello porque al no ser tan popular, no viene soportado en las tarjetas principales comerciales. El disco duro SAS tiene medidas de 2.5 pulgadas (SFF 2.5") y también el estándar de 3.5 pulgadas (LFF 3.5").
  • SATA II / SATA 2 significa "Serial Advanced Technology Attachment 2" ó tecnología serial avanzada de contacto de segunda generación, con tecnología de transmisión de hasta 3 Gbps.
     Esta es la segunda generación de la familia de discos duros SATA. SATA II  maneja la transferencia de datos de modo serial mejorado con un cable de datos de 7 conectores y genera una transferencia de datos (Rate) de hasta 300 Megabytes / segundo (Mb/s).Permite la conexión de solo un dispositivo por conector. Este tipo de discos tienen una característica denominada "Hot swappable", lo que significa poder conectarlo y desconectarlo sin necesidad de apagar la computadora. Los discos duros SATA II están comenzando a reemplazar a los discos duros IDE y discos duros SATA. El disco duro SATA II tiene la medida estándar de los discos duros para computadora de escritorio: 3.5 pulgadas (3.5").
Los discos duros SATA II compiten actualmente en el mercado contra los discos duros SCSI , discos duros SAS y los discos duros IDE.
Los discos duros SATA II reemplazaron del mercado a los discos duros SATA.
  • SATA significa "Serial Advanced Technology Attachment" ó tecnología avanzada adjunta serial.
     Esta es una nueva especificación que maneja la transferencia de datos de modo serial mejorado con un cable de datos de 7 conectores y genera una transferencia de datos (Rate) de hasta 150 MegaBytes/segundo (MB/s). Permite la conexión de solo un dispositivo por conector y n máximo de 1 m de longitud. Este tipo de discos tienen una característica denominada "Hot Swappable", lo que significa poder conectarlo y desconectarlo sin necesidad de apagar la computadora. 
   El disco duro SATA puede tener 2 medidas, estas se refieren al diámetro que tiene el disco cerámico físicamente, por lo tanto el tamaño de la cubierta también variará.

Disco duro portatil

Un disco duro externo, es un dispositivo de almacenamiento magnético, capaz de guardar grandes volúmenes de información, pero que no se encuentra montado dentro del gabinete de la computadora, sino que es posible conectarlo y utilizarlo externamente por medio de un cable hacia el puerto USB , puerto FireWire,puerto de red LAN RJ45, conector eSata  ó inclusive vía inalámbrica como en el caso de la red inalámbrica WirelessG, el disco permanece girando todo el tiempo que se encuentra encendido.

  •   Hay 4 tipos básicos de discos duros externos:



1.- Discos duros externos portátiles.
     Son discos duros con un tamaño reducido, del orden de las 2.5 pulgadas de diámetro (2.5") y un diseño que permite transportarlos fácilmente de un lugar a otro, por lo que cuenta con características de protección contra golpes y sacudidas, no debiendo descartarse que también los hay de tamaño 3.5".
      Los conectores de datos con que cuenta pueden ser USB 2.0/ USB 3.0, eSATA ó ambos dependiendo el modelo. Las capacidades actuales de almacenamiento fluctúan entre 60 Gigabytes (GB)hasta 2 Terabytes (TB).


2.- Discos duros externos de escritorio.
     Son discos duros con un tamaño considerable en comparación con el portátil, es decir 3.5 pulgadas de diámetro (3.5") y externamente pueden ser mayores, por lo que cuenta con una base que permite colocarlo de manera segura en una superficie plana. Los conectores de datos con que cuenta pueden ser USB 2.0/USB 3.0, eSATA, FireWire, LAN RJ45 1 Gb, WirelessG ó una combinación entre los anteriores dependiendo el modelo. Las capacidades actuales de almacenamiento fluctúan entre 80 GB hasta 12 Terabytes (TB) con soporte RAID para redes de almacenamiento (NAS - Network ÁreaStorage).

3.- Mini Discos duros externos.
     Son discos duros con un tamaño sumamente pequeño (4.5 cm. x 5 cm.), que permiten ser usados de manera similar a una memoria USB, pero con una capacidad superior de almacenamiento. 
     El conector de datos con que cuenta es un USB. Las capacidades actuales de almacenamiento fluctúan entre 16 GB hasta 32 Gigabytes. Se alimenta eléctricamente por medio del puerto USB de la computadora.
      Estos dispositivos no lograron la popularidad que alcanzaron las memorias USB, por lo que su comercialización no fue exitosa, actualmente es difícil encontrar estos dispositivos en el mercado.


.

 4.- Convertidor de disco duro interno a externo.
     No es propiamente un disco duro externo, sino un gabinete metálico (Case), listo para se armado, que permite reconocer un disco duro IDE ó un disco duro SATA / SATA II como externo,  y de esta manera poder transportarlo de un lugar a otro.
     El tipo de conector que utiliza para conectarse a la computadora es un USB y se alimenta eléctricamente por medio de un convertidor AC/DC que se coloca directamente a la corriente del enchufe de pared. La capacidad está en función del disco duro de 3.5" ó 2.5" elegido para montar en el case (desde 10 MegaBytes (MB) hasta 2 Terabytes (TB).


Lector/grabador de CD/DVD/ Bluray

También llamada unidad de disco óptico, es una unidad de disco que usa láser u ondas electromagnéticas cerca al espesctro de la luz como parte del proceso de lectura o escritura de datos desde discos ópticos o a ellos.

Se usa el término lectograbadora para referirse a aquellas unidades que pueden hacer tanto la función de lectura como la de grabadora.

Los CD (Compact Disc, en español Disco Compacto) tienen una capacidad de 700 MB. Los Mini-CD tienen una capacidad de 214 MB.
Los DVD (Digital Versatile Disc, en español Disco Versátil Digital) tienen una capacidad de 4´7 GB.
Los Blu-ray tienen una capacidad desde los 25 GB hasta los 33´4 GB por capa.



Qué es el chipset de una computadora?



El chipset es el conjunto de circuitos que nos encontramos sobre laplaca base. Se encarga de conectar los distintos elementos que se encuentran en el interior de la CPU.
Su funcionalidad ha ido cambiando bastante a lo largo del tiempo, debido sobre todo a cambios que se han producido en los propiosprocesadores. Estos, integran cada vez más elementos que anteriormente encontrábamos sobre la placa. Además, la capacidad para crear dispositivos cada vez más pequeños, ha permitido que tarjetas que tenían que ser discretas, como la de sonido o la de red pasen a estar soportadas por el propio chipset.
Para que lo entiendas de una forma sencilla, se pasa de tener un dispositivo discreto que realiza una función como puede ser una tarjeta gráfica a integrarlo en el chipset sobre la placa base y después gracias a las mejoras en las tecnologías de fabricación a incluirlo en el interior del procesador.
Esto lleva a que en ciertos equipos tengas duplicidades. Es decir varios elementos que pueden ser usados para realizar el mismo trabajo cada uno con sus propias prestaciones.
El chipset siempre será el encargado de darnos el conexionado hacia el exterior. De nada nos sirve tener una tarjeta gráfica integrada en la CPU, como tenemos en las APUs si al final el chipset que se monta sobre tu placa no tiene una salida para conectarlo a un monitor.
Los chipsets por tanto suelen incluir gran cantidad de componentes:
Tarjeta gráfica. Es muy común, encontrarnos con equipos que tienen la tarjeta integrada en el propio chipset. No confundir con aquellos que la tienen integrada en el propio microprocesador. En ambos casos esta tendrá que usar la memoria RAM para llevar a cabo sus funciones dejando menos cantidad de esta para tus programas. Ten esto último en cuenta a la hora de configurar tu próximo PC.
Tarjeta de sonido. Casi todas las placas incorporan ya de serie soporte para audio y sus conexiones. Esta cubrirá las necesidades básicas del usuario normal.
Tarjeta de red. Al igual que ha ocurrido con las tarjetas de sonido, estas han acabado emplazadas en la propia placa base.
Conexión inalámbrica. Desde la aparición de los primeros Centrino, Intel tenía claro que quería incluir la máxima funcionalidad en la placa base para crear laptops más pequeños y con menos consumo. Es muy común encontrar chipset que añaden conexión Wifi y bluetooth sin necesidad de añadir una tarjeta externa.
Conexionado hacia el exterior. Aparte de las conexiones para los elementos anteriores, es común ver USB integrados en el chipset o puertos SATA o PCI Express para dispositivos externos.
Recuerda que el tener unos drivers actualizados para tu chipset es obligatorio si quieres utilizar todos los elementos que contiene y no encontrarte con problemas.